
Time to Quality gives More for Less

with Altreonic’s formalised systems and software engineering
methodology and tools

Firstly, it serves to analyse and under-

stand. What is the goal to be achieved?
What is the real problem to be solved? Is it
a real issue or does it just look like one?
This analysis activity is often dominated by
the use of natural language and by the
presence of many stakeholders. One must
be aware that at this stage the information
will be incomplete, incoherent and contra-
dictory, or will already assume a solution
based on past experience.

Making sure that all stakeholders agree on
the product are system to be developed is
called “Requirements and Specifications”
capturing.
At this stage, one must not only think in
terms of the “normal” use, but also take into
account fault and test conditions. If not con-
sidered up front, it can be very costly to
retrofit a system with support for it.

Secondly, it serves to plan and to predict.
Once the requirements and specifications
are well understood, architectural model-
ling can explore different ways to imple-
ment the specifications. Simulation mod-
elling allows “what-if” analysis and al-
lows to verify that the requirements and
specifications really reflect what is
needed. Formal models can then be use to
verify mathematically critical properties
of the system.

Once all alternatives have been consid-
ered, the implementation can start and we
enter the domain of traditional develop-
ment engineering. The architectural mod-
elling will have identified several entities
that provide the specified properties.
These can be assigned to a Work plan that
divides the work into Work Packages,
each consisting of development, verifica-
tion, test and validation tasks. /...

Think before you begin. Some people might call this wisdom, but it is at the core of sys-
tems and software engineering. It serves two main goals:

From Deep Space to Deep Sea

Push button high reliability

www. Altreonic.com

Work plan view
A Development Task is the core activity of a
Work Package. It will develop a part of the final
system according to a predefined or mandatory
methodology. To verify that the development
was done correctly a Verification Task is exe-
cuted and when no issues are found, Test tasks

will verify that the developed entity meets the
specifications.
When all development is done, verified, and
tested, integration can start. When completed, the
system can be validated against the original re-
quirements and released. If all went well, the se-
lected architectural model will be the implemen-
tation model. This transfers the developed prod-
uct or system to production entering the phase of
maintenance.
More upfront, less costs afterwards
During the process, issues will be discovered and
changes will be needed. But the further the pro-
ject has proceeded, the higher the cost will be if
an issue results in rework. The keyword in all
these activities is formalisation. Often, it will even
result in cleaner architectures
Hence, a well thought out engineering process
will not only result in better quality for less cost,
but also provides risk reduction by finding the
issues as much as possible early in the process.
Altreonic provides more
At Altreonic we not only formalised a specific
engineering process, we took a formalised look at
systems engineering in general and the resulting
view is surprisingly simple. We found out it can
be used for technical as well as for non-technical
domains. It can even be applied in a project to
develop a standards aware methodology.
OpenCookbook ©
OpenCookbook was developed as a web based
environment supporting a project from require-
ments till reaching the release point. However in
an organisation heuristic knowledge is key in pre-
serving the competitive edge and such knowl-
edge and organisational procedures can be cap-
tured as well. If compliance with external stan-
dards (like the IEC61508 safety standard) is
needed, these can be added as boundary condi-
tions to the engineering process allowing to pre-
certify while the project is executed. Documents
are not written but generated as time stamped
snapshots.

OpenVE © and OpenComRTOS ©
As many real-world systems can easily be mod-
elled as a set of interacting entities, this became
our main architectural paradigm. This is reflected
in OpenVE a visual modelling environment. It
can supports in particular OpenComRTOS. The
latter was formally developed as a network-
centric RTOS allowing to program from very
small processors to heterogeneous distributed
networks in a transparent and scalable way. The
use of formal modelling has resulted in a very
clean and safe architecture within a very small
code size, ranging from just 1 KBytes to about 10
KBytes. Small in the embedded world means
more performance and less power and less code
to verify.

For information or to discuss your needs:

Contact: Altreonic NV

Gemeentestraat 61A b1

B3210 Linden—Belgium

Tel.:+32 16 202059

info.request @ altreonic.com

From Deep Space to Deep Sea

Push button high reliability

www. Altreonic.com

Lessons
What Altreonic brings is less risk and higher
quality at a lower price by shifting the effort up-
front and by providing an integrated approach
from early requirements to product release. In
these times where trustworthiness is important,
this means not only less time to market but also
less time to quality. And quality in the end is al-
ways a winner.

text

R
e

d
e

s
ig

n

O
p

e
n

P
la

tf
o

r
m

s O
p

e
n

C
o

m
R

T
O

S

O
p

e
n

V
E

O
p

e
n

T
r

a
c

e
r

Unifying

Repository

(metamodel)

O
p

e
n

C
o

o
k

B
o

o
k

Tools

- Formal model bu i ld ing

- Logic s imulat ion model

- Funct iona l composi t ion

- Funct iona l decomposi t ion

- Code generat ion

Reference p la f torms wi th

arch i tectura l suppor t for

Concurrency and

communicat ion

- Requi rements captur ing

- Speci f ica t ion captur ing

- Test cases

- Fa i lures Analys is

Runt ime env i ronment

suppor t ing

d is t r ibuted

concurrency and

communicat ion

